In our previous blog post, Treatment of Fractured Rock – How is it Different? we introduced the two main challenges when working on fractured bedrock sites. We focused that post on the first challenge: How to decide on a thermal treatment volume without making the problem worse. In this post, we’ll discuss the second major challenge, which is how to design and implement an effective and safe thermal system at challenging fractured rock sites.
Both of the main challenges were discussed at length in our webinar, “Thermal Conductive Heating – The remedy option for bedrock.” If you missed the live webinar presentation, the recording is now available. If you don’t want to miss out on another opportunity to learn from one of our experts, please update your email preference settings to include our webinar communications.
Once the treatment volume has been set, the next step is to determine the best thermal method for the site. Cascade Thermal and our current staff have worked at seven different bedrock sites. Our lessons learned include that:
At one of our sites, we succeeded in heating the matrix blocks, but not the fractures where water flowed. This meant that the reduction of TCE concentrations in the rock samples was more modest near the fractures, as illustrated in the plot below.
Rock concentrations before (BR-1, blue) and after (BRP-1, magenta) the TC pilot test at the NAWC site in West Trenton, NJ. Note that the system was not operated long enough to target complete TCE removal.
Water flowed rapidly in fractures at depths of 17 and 31 ft (depths where the TCE reduction was modest). We believe that the cold groundwater flow kept the temperature low enough that the TCE could not be boiled and removed from the matrix in those locations. In contrast, TCE concentrations in the matrix blocks away from the fractures were reduced to modest levels.
At another site in California, we treated a 100-foot deep TCE site using TCH. The figure below shows the Tier-1 system used. Rock sampling during installation was used to optimize the treatment volume – and the shape changed a lot based on the data.
TCH treatment to 100 ft into granite at a site in California, completed in 2017.
This site was successfully heated and treated – without the need for steam injection to enhance treatment of the fractures. Extraction wells co-located with each heater ensured that the TCE was captured, and provided an option to sample the vapor stream from all areas of the site and document that TCE levels were reduced by approximately three orders of magnitude by the treatment.
In conclusion, the most robust and predictable thermal method for fractured rock is TCH, and DNAPL constituents can be effectively removed. One can heat any type of solid matrix because the heat moves under simple thermal gradients. The hot boreholes allow for vapor control, as the contaminants are extracted from every borehole near the locations where they vaporize. Below the water table, the addition of steam in select locations may enhance the process by heating those fractures in which cold water would otherwise move and slow the heating.
As mentioned previously, this topic was presented with expanded details and including a question & answer session in the webinar, Thermal Conductive Heating – The Remedy Option for Deep Bedrock.
A: Yes, we can heat the boreholes using fluids as well, but the temperature is then limited to the fluid temperature. Unless gas burners are used, the modest temperatures would mean that the borings should be much closer together, increasing the drilling and construction costs.
A: For TCH we install casings of 2-3 inches in diameter. We can direct push them, or drill and either grout or set in sandpack. The latter means boreholes of 6 inches or larger
A: The SRSNE site was very large (more than 500 heaters), and 500,000 lbs of CVOC removed. The cost was above $10 MM when all is included
A: What I meant to say is that TCH and ERH both work well for rock with higher porosity and moisture content. For low porosity and dry rock, TCH is favored because the electricity used for ERH does not penetrate well (the electrical resistivity is too high).
A: Direct push and rotosonicis often most economical, but in crystalline rock, we often need air rotary to get to depth.
A: Between 150 and 250 kWh per cubic yard for VOCs, and double that for SVOCs
A: Steam heats the fractures and reduces the cooling that can be caused by water inflow from surrounding areas. One needs a good understanding of the fracture network before steam is injected and extracted unless steam injection is performed on the perimeter in clean conditions to block water flow.
Contact us for more information on the treatment of fractured rock, or for an evaluation of a site if “going hot” is one of your options.